Autophagy contributes to retardation of cardiac growth in diabetic rats

نویسندگان

  • Youngjeon Lee
  • Yunkyung Hong
  • Sang-Rae Lee
  • Kyu-Tae Chang
  • Yonggeun Hong
چکیده

Diabetes mellitus is a major predictor of heart failure, although the mechanisms by which the disease causes cardiomyopathy are not well understood. The purpose of this study was to determine whether prolonged exposure of cardiomyocytes to high glucose concentrations induces autophagy and contributes to cardiomyopathy. Interestingly, there were no differences in the autophagic activation produced by different glucose concentrations. However, cell viability was decreased by high glucose. In the diabetic rats, we found a higher level of microtubule-associated protein light chain 3 (LC3) expression and a reduction in the size of the left ventricle (LV) (P<0.05) caused by growth retardation, suggesting activated autophagy. Our in vitro findings indicate that hyperglycemic oxidative stress induces autophagy, and our in vivo studies reveal that autophagy is involved in the progression of pathophysiological remodeling of the heart. Taken together, the studies suggest that autophagy may play a role in the pathogenesis of juvenile diabetic cardiomyopathy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Protein Kinase-B on FOXO Autophagy Family Proteins (FOXO1 and FOXO3a) Following High Intensity Interval Training in the Left Ventricle of the Heart of Diabetic Rats by Streptozotocin and Nicotinamide

Background: FOXO family proteins are important factors in autophagy pathway. Protein kinase-B is an important regulator for this family that can be regulated through exercise training. Therefore, the aim of this study is to investigate the effect of protein kinase-B (PKB) on FOXO autophagy family proteins (FOXO1 and FOXO3a) following high intensity interval training (HIIT) in the left ventricle...

متن کامل

HIGH INTENSITY INTERVAL TRAINING INHIBITS AUTOPHAGY IN THE HEART TISSUE OF TYPE 2 DIABETIC RATS BY DECREASING THE CONTENT OF FOXO3A AND BECLIN-1 PROTEINS

Background: Diabetic cardiomyopathy is a complication type 2 diabetes mellitus that can lead to cardiac muscle autophagy through the proteins FOXO3a and Beclin-1. Therefore, the aim of this study is to investigate the effect of 8 weeks High intensity interval training (HIIT) on the content of FOXO3a and Beclin-1 proteins in heart muscle tissue of Sprague-Dawley rats with type 2 diabetic rats. ...

متن کامل

The Effect of Endurance Training on Expression of Autophagy Genes (Beclin-1, ULK-1) in the Heart Tissue of Male Rats with Experimental Diabetes

Objective: This study aimed to investigate the effect of six weeks of endurance training on the expression of autophagy-related genes (Beclin-1, ULK-1) in the heart tissue (Myocardium) of rats with diabetes. Materials and Methods: Twenty male wistar rats (weight: 204±11.3g), (age= 8 weeks) were divided into four groups including: 1) diabetic type1 training, group 2) diabetic type1 control, gro...

متن کامل

The Effect of Aerobic Training on Tumor Necrosis Factor alpha, Hypoxia-Inducible Factor-1 alpha & Vascular Endothelial Growth Factor Gene Expression in Cardiac Tissue of Diabetic Rats

Objective: The goal of this research was to determine the influence of 4 weeks aerobic training on gene expression of tumor necrosis factor alpha (TNF-α), hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) in the cardiac tissue of diabetic rats. Materials and Methods: In an experimental study, 30 male wistar rats were partitioned into three groups (n=10), d...

متن کامل

Cardiac dysfunction is attenuated by ginkgolide B via reducing oxidative stress and fibrosis in diabetic rats

Objective(s): Diabetic cardiomyopathy is a leading factor of high morbidity and mortality in diabetic patients. Our previous results revealed that ginkgolide B alleviates endothelial dysfunction in diabetic rats. This study aimed to investigate the effect of ginkgolide B on cardiac dysfunction and its mechanism in diabetic rats.Materials and Methods:<...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2012